Copied to
clipboard

G = C42.43Q8order 128 = 27

3rd non-split extension by C42 of Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.43Q8, C42.306D4, C8.16M4(2), C42.625C23, (C4×C8).20C4, C82C825C2, C81C826C2, (C22×C8).41C4, C4.123(C4○D8), (C22×C4).75Q8, C4⋊C8.216C22, C23.51(C4⋊C4), C42.312(C2×C4), (C4×C8).391C22, (C22×C4).542D4, C4.45(C2×M4(2)), C2.8(C4⋊M4(2)), C42.6C4.28C2, C22.5(C8.C4), (C2×C42).1043C22, C2.5(C23.25D4), (C2×C4×C8).42C2, (C2×C4).76(C4⋊C4), (C2×C8).232(C2×C4), C2.8(C2×C8.C4), C22.82(C2×C4⋊C4), (C2×C4).152(C2×Q8), (C2×C4).1461(C2×D4), (C2×C4).507(C22×C4), (C22×C4).476(C2×C4), SmallGroup(128,300)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.43Q8
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C42.43Q8
C1C2C2×C4 — C42.43Q8
C1C2×C4C2×C42 — C42.43Q8
C1C22C22C42 — C42.43Q8

Generators and relations for C42.43Q8
 G = < a,b,c,d | a4=b4=1, c4=a2, d2=a2bc2, ab=ba, ac=ca, dad-1=a-1b2, bc=cb, dbd-1=a2b, dcd-1=c3 >

Subgroups: 124 in 84 conjugacy classes, 52 normal (34 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, C22×C4, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C22×C8, C82C8, C81C8, C2×C4×C8, C42.6C4, C42.43Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, M4(2), C22×C4, C2×D4, C2×Q8, C8.C4, C2×C4⋊C4, C2×M4(2), C4○D8, C4⋊M4(2), C23.25D4, C2×C8.C4, C42.43Q8

Smallest permutation representation of C42.43Q8
On 64 points
Generators in S64
(1 7 5 3)(2 8 6 4)(9 29 13 25)(10 30 14 26)(11 31 15 27)(12 32 16 28)(17 61 21 57)(18 62 22 58)(19 63 23 59)(20 64 24 60)(33 39 37 35)(34 40 38 36)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)
(1 33 56 47)(2 34 49 48)(3 35 50 41)(4 36 51 42)(5 37 52 43)(6 38 53 44)(7 39 54 45)(8 40 55 46)(9 23 31 61)(10 24 32 62)(11 17 25 63)(12 18 26 64)(13 19 27 57)(14 20 28 58)(15 21 29 59)(16 22 30 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 32 39 60 52 14 41 18)(2 27 40 63 53 9 42 21)(3 30 33 58 54 12 43 24)(4 25 34 61 55 15 44 19)(5 28 35 64 56 10 45 22)(6 31 36 59 49 13 46 17)(7 26 37 62 50 16 47 20)(8 29 38 57 51 11 48 23)

G:=sub<Sym(64)| (1,7,5,3)(2,8,6,4)(9,29,13,25)(10,30,14,26)(11,31,15,27)(12,32,16,28)(17,61,21,57)(18,62,22,58)(19,63,23,59)(20,64,24,60)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52), (1,33,56,47)(2,34,49,48)(3,35,50,41)(4,36,51,42)(5,37,52,43)(6,38,53,44)(7,39,54,45)(8,40,55,46)(9,23,31,61)(10,24,32,62)(11,17,25,63)(12,18,26,64)(13,19,27,57)(14,20,28,58)(15,21,29,59)(16,22,30,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,32,39,60,52,14,41,18)(2,27,40,63,53,9,42,21)(3,30,33,58,54,12,43,24)(4,25,34,61,55,15,44,19)(5,28,35,64,56,10,45,22)(6,31,36,59,49,13,46,17)(7,26,37,62,50,16,47,20)(8,29,38,57,51,11,48,23)>;

G:=Group( (1,7,5,3)(2,8,6,4)(9,29,13,25)(10,30,14,26)(11,31,15,27)(12,32,16,28)(17,61,21,57)(18,62,22,58)(19,63,23,59)(20,64,24,60)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52), (1,33,56,47)(2,34,49,48)(3,35,50,41)(4,36,51,42)(5,37,52,43)(6,38,53,44)(7,39,54,45)(8,40,55,46)(9,23,31,61)(10,24,32,62)(11,17,25,63)(12,18,26,64)(13,19,27,57)(14,20,28,58)(15,21,29,59)(16,22,30,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,32,39,60,52,14,41,18)(2,27,40,63,53,9,42,21)(3,30,33,58,54,12,43,24)(4,25,34,61,55,15,44,19)(5,28,35,64,56,10,45,22)(6,31,36,59,49,13,46,17)(7,26,37,62,50,16,47,20)(8,29,38,57,51,11,48,23) );

G=PermutationGroup([[(1,7,5,3),(2,8,6,4),(9,29,13,25),(10,30,14,26),(11,31,15,27),(12,32,16,28),(17,61,21,57),(18,62,22,58),(19,63,23,59),(20,64,24,60),(33,39,37,35),(34,40,38,36),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52)], [(1,33,56,47),(2,34,49,48),(3,35,50,41),(4,36,51,42),(5,37,52,43),(6,38,53,44),(7,39,54,45),(8,40,55,46),(9,23,31,61),(10,24,32,62),(11,17,25,63),(12,18,26,64),(13,19,27,57),(14,20,28,58),(15,21,29,59),(16,22,30,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,32,39,60,52,14,41,18),(2,27,40,63,53,9,42,21),(3,30,33,58,54,12,43,24),(4,25,34,61,55,15,44,19),(5,28,35,64,56,10,45,22),(6,31,36,59,49,13,46,17),(7,26,37,62,50,16,47,20),(8,29,38,57,51,11,48,23)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N8A···8P8Q···8X
order12222244444···48···88···8
size11112211112···22···28···8

44 irreducible representations

dim11111112222222
type++++++-+-
imageC1C2C2C2C2C4C4D4Q8D4Q8M4(2)C4○D8C8.C4
kernelC42.43Q8C82C8C81C8C2×C4×C8C42.6C4C4×C8C22×C8C42C42C22×C4C22×C4C8C4C22
# reps12212441111888

Matrix representation of C42.43Q8 in GL4(𝔽17) generated by

4000
0400
00160
0001
,
13000
0400
0040
0004
,
8000
0200
0040
00013
,
0100
1000
0001
00130
G:=sub<GL(4,GF(17))| [4,0,0,0,0,4,0,0,0,0,16,0,0,0,0,1],[13,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[8,0,0,0,0,2,0,0,0,0,4,0,0,0,0,13],[0,1,0,0,1,0,0,0,0,0,0,13,0,0,1,0] >;

C42.43Q8 in GAP, Magma, Sage, TeX

C_4^2._{43}Q_8
% in TeX

G:=Group("C4^2.43Q8");
// GroupNames label

G:=SmallGroup(128,300);
// by ID

G=gap.SmallGroup(128,300);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,64,1430,184,1123,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2,d^2=a^2*b*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽